京公网安备 11010802034615号
经营许可证编号:京B2-20210330
两项分别由英国人工智能实验室DeepMind与由德国和希腊的研究人员进行的研究显示了AI与神经网络科学之间有着令人着迷的关系。
就像大多数科学家说的那样,我们距开发能够像人类一样有效地解决问题的人工智能还差几十年。在创造通用AI的道路上,人脑(可以说是最复杂的自然创造)是我们掌握的最佳指南。
神经科学对神经系统的研究,为大脑如何工作提供了有趣的见解,大脑是开发更好的AI系统的关键组成部分。相应地,更好的AI系统的开发可以帮助推动神经科学向前发展,并进一步释放大脑的秘密。
例如,卷积神经网络(CNN)是人工智能最新进展的关键贡献者之一,它很大程度上受到视觉皮层神经科学研究的启发。另一方面,神经科学家利用AI算法研究来自大脑的数百万个信号,并找出可能消失的模式。这两个领域密切相关,它们的协同作用产生了非常有趣的结果。
神经科学领域的最新发现表明,我们在AI方面正在做的正确的事情,以及我们做错了什么。
DeepMind的研究人员最近进行的一项研究证明,人工智能研究(至少是其中的一部分)正朝着正确的方向发展。
感谢神经科学,我们知道人类和动物学习的基本机制之一就是奖惩。积极的结果会鼓励我们重复某些任务(做运动,学习考试等),而消极的结果会阻止我们重复犯错(触摸火炉)。
俄罗斯生理学家伊凡·帕夫洛夫(Ivan Pavlov)的实验最为人所知,这种奖罚机制是训练狗在听到铃铛时会期待食物。我们还知道,多巴胺是中脑产生的一种神经递质,在调节大脑的奖励功能中起着重要作用。
强化学习(RL)是人工智能研究中最热门的领域之一,它是根据大脑的奖赏/惩罚机制而大致形成的。在RL中,设置了AI代理来探索问题空间并尝试不同的操作。对于其执行的每个动作,代理都会收到数字奖励或惩罚。通过大量的试验和错误,并检查其操作的结果,AI代理开发了一种数学模型,该模型经过了优化,可以最大程度地提高奖励并避免惩罚。
最近,AI研究人员一直致力于分布增强学习以创建更好的模型。分布式RL的基本思想是使用多种因素以一系列乐观和悲观的方式预测奖惩。分布强化学习对于创建对环境变化更具弹性的AI代理至关重要。
这项新的研究是由哈佛大学和DeepMind共同完成的,并于上周在《自然》杂志 上发表。该研究发现,小鼠大脑的特性与分布强化学习的特性非常相似。AI研究人员测量了大脑中的多巴胺激发率,以检查生物神经元的奖励预测率的差异。
有趣的是,在小鼠的神经系统中发现了AI科学家在分布式强化学习模型中编程的乐观和悲观机制。DeepMind的研究人员在AI实验室网站上发布的博客文章中写道:“总而言之,我们发现大脑中的多巴胺神经元每个都被调到了不同的悲观或乐观水平。“在人工强化学习系统中,这种多样化的调整会产生更丰富的训练信号,从而极大地加快了神经网络的学习速度,我们推测大脑可能出于相同的原因使用它。”
使这项发现与众不同的是,尽管AI研究通常从神经科学发现中汲取灵感,但在这种情况下,神经科学研究已经验证了AI发现。研究人员写道:“它使我们对AI研究走上正轨的信心增强,因为该算法已被我们所知道的最智能的实体:大脑使用。”
这也将为神经科学的进一步研究打下基础,这反过来将有利于AI领域发展。
尽管DeepMind的新发现证实了AI强化学习研究的成果,但柏林科学家的另一项研究却于1月初发表在《科学》杂志上,这证明我们对大脑所做的一些基本假设是完全错误的。
关于大脑结构的普遍信念是,神经元是神经系统的基本组成部分,它们是简单的积分器,用于计算其输入的加权总和。基于这种理念,设计了一种流行的机器学习算法类型:人工神经网络。
单独地,人工神经元执行非常简单的操作。它需要几个输入,将它们乘以预定义的权重,求和后再通过激活函数运行它们。但是,当多层连接成千上万(十亿)个人工神经元时,您将获得一个非常灵活的数学函数,可以解决复杂的问题,例如检测图像中的对象或记录语音。
人工神经元的多层网络(通常称为深度神经网络)是过去十年中深度学习革命背后的主要动力。
但是,对生物神经元是基本数学的“愚蠢”计算器的普遍认识过于简单。德国研究人员的最新发现后来被希腊的神经科学家证实,证明了单个神经元可以执行XOR运算,这一前提遭到了AI先驱者如Marvin Minsky和Seymour Papert的拒绝。
尽管并非所有神经元都具有这种能力,但这一发现的意义是重大的。例如,这可能意味着单个神经元可能在其内部包含一个深层网络。宾夕法尼亚大学的计算神经科学家康拉德·科尔丁(Konrad Kording)并未参与这项研究,他对《广达杂志》(Quanta Magazine)表示,这一发现可能意味着“单个神经元可能能够计算出真正复杂的功能。例如,它本身可能就能识别出一个物体。”
这对人工智能研究意味着什么?至少,这意味着我们需要重新考虑我们对神经元的建模。它可能会刺激对具有不同类型神经元的新型人工神经元结构和网络的研究。也许它可以帮助我们摆脱必须构建超大型神经网络和数据集来解决非常简单的问题的陷阱。
外语原文链接: https://bdtechtalks.com/2020/01/20/neuroscience-artificial-intelligence-synergies/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03