京公网安备 11010802034615号
经营许可证编号:京B2-20210330
要处理数据异常,我们要先知道什么是数据异常。首先要有数据,才能知道什么是“异常”,百度百科的解释是:指非正常的,不同于平常的。比方如突然的涨,突如其来的跌。
数据涨跌是我们在日常工作中,最容易被发现的现象,也是我们平时工作中要去分析的。也就是说,平时数据没有波动,也许我们不需要去分析,但是如果数据有涨或者跌我们都需要去查出原因的。
为什么涨和跌都要关注?
相信很多朋友跟我一样,起初接触到数据,我只关心跌,为什么昨天的数据跌了?并去分析其原因,也会关心涨,但并不关心为什么涨,就像买股票一样,跌了痛心疾首,并分析原因,涨了满心欢喜,后悔自己为什么不买入多一点儿。
在数据分析的过程中,我们不仅仅要关心跌,以便采取相应动作,减缓跌的趋势,也更要关心涨,弄清楚涨的原因,并放大它,或者说是复制它!
数据异动分析方法论
针对异常数据的处理,通常有五个步骤:
1.发现异常
就像你发现昨天数据跟往前不一样,猛涨了还是猛跌了,通过观测数据发现异常。
2.确定问题
发现异常之后,我们要确定这个异常是不是一个问题,有多严重,可以用对比分析法从时间维度上进行周同比、月同比或者是年同比。
3.确定原因
用多维度拆解法,对于这个异常的指标从不同的维度去拆解,找出原因。
4.针对性解决问题
找到原因之后,就是针对性的解决问题了,根据问题的原因,动用公司的相关资源,去解决这个问题。
5.执行
最后就是执行解决方案,把这个异常数据真正的从异常到执行,完成一个闭环。
案例解析
举个栗子:你现在是做社交APP产品的,在处理数据的过程中,发现某一天的数据异常,该如何分析?
发现问题:在对数据进行统计汇总时发现某一天的异常数据。
确定问题:数据跌了那么多,问题是不是很严重呢?往期有没有这么大的浮动?
由上图的周同比和月同比数据可以看出,往期是没有这个问题的,那说明这是一个严重的个例,表示这一天确实发生了什么事情,造成数据异常的情况。
确定原因:那是不是哪个省份出了问题呢?下面我们按省份进行查看,由下图可以看出,这次数据的猛跌是全国范围内的,基本上所有的省份都有下迭,这样就排除了某个区域下跌的原因。
那是不是设备出问题了呢?再来看不同操作系统的数据有什么不同,由下图可以看出安卓和iOS在这天都出现了下跌,所以排除了设备出问题的可能性。
那是不是服务挂了呢?按小时或者分钟来查看数据是不是符合平时流量规律?
通过上图可以看出,在这一天的0:01分,平台的数据为0,出现了断崖式下跌。而对于社交产品,以往这个时间用户活跃度是很高的,由此可以确定,这一天的数据异常确实是因为服务挂了。
针对性解决问题:联系相关负责人制定及时有效的解决方案。
执行:落实和监测解决方案的执行效果。
以上五个步骤看起来简单,但它是基于对业务洞察的基础之上的,需要根据以往的经验,才能做出这些判断 。如果对自己的业务不了解,再多的工具或是方法论,都是没有用的。所以,需要大家在工作中,不断的积累,不断的验证。
通过上面的案例解析,发现在确定问题时我们提了很多假设,其实数据只是验证假设的支撑工具。而这些假设是基于对业务有足够了解的基础之上的,在这个过程中,需要不断的去试错,不断的积累行业及业务的洞察,才能做出这些假设。
常见的假设
1.活动影响:查对应活动页面及对应动作的数据波动,关注活动是否有地域属性
通常市场或者运营会去做一些活动,所以如果数据出现问题,先看看PV、UV等数据,看是不是活动的影响。
2.版本发布:将版本号作为维度,区分查看
有时候数据出现异常也有可能是新版本的发布带来的波动,所以也可以把版本拎出来看,如果发布的是V1.5,我们可以对比着看看V1.3、V1.4这三个版本数据,看是否正常。
3.渠道投放:查看渠道来源变化
WEB端的渠道来源有很多很多,但是像APP就有点困难,这时可以看看新增的渠道来源,来看看变化影响。
4.策略调整:策略上线时间节点,区分前后关键指标波动
工作中我们会经常改变策略,比如说搜索策略,推荐策略等等,但是呢策略改变之后上线,它肯定有上线时间节点的,这时候可以把这个时间节点像刚才讲的案例那样,拆分成分钟来观察。
5.服务故障:明确故障时间,按时间维度进行小时或者分钟级别进行拆分
通过上面的案例可以看出,服务故障出问题是有一个明确时间的,按照上面案例讲的方法来观察,按分钟来查看,看有没有出现断崖式下跌,这个时候就可以明确是不是服务出现了故障。
——热门课程推荐:
想学习PYTHON数据分析与金融数字化转型精英训练营,您可以点击>>>“人才转型”了解课程详情;
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03