京公网安备 11010802034615号
经营许可证编号:京B2-20210330
英文:Ordered dict surprises
(https://nedbatchelder.com//blog/202010/ordered_dict_surprises.html)
作者:Ned Batchelder
译者:豌豆花下猫
来源:Python猫
从python 3.6 开始,常规的字典会记住其插入的顺序:就是说,当遍历字典时,你获得字典中元素的顺序跟它们插入时的顺序相同。
在 3.6 之前,字典是无序的:遍历顺序是随机的。
关于有序字典,这里有两件令人意外的事情。
1、你无法获得第一个元素
由于字典中的元素具有特定的顺序,因此获取第一个(或第 N 个)元素应该很容易,对吧?
不对!没办法直接做到。
你可能会认为 d[0] 就是第一个元素,但并不是,它只是键为 0 的值,有可能是添加到字典的最后一个元素。
获得第 N 个元素的唯一方法是遍历字典,直到取得第 N 个元素。不能根据有序索引来作随机访问。
这是一处列表胜过字典的地方。获取列表的第 N 个元素是 O(1) 操作。获取字典的第 N 个元素(即使已排序)是 O(N) 操作。
2、OrderedDict 有点不同
由于现在的字典是有序的,collections.OrderedDict 就没用了,对吧?
(译注:3.6 版本前的 dict 是无序的,但标准库里提供了一个有序字典 OrderedDict。现在 dict 变有序了,那 OrderedDict 似乎是多余了?)
好像是。但是它不会被删除,因为那样会破坏正在使用它的代码,并且它还拥有一些常规字典没有的方法。
另外,它们在行为上也有细微的差别。在比较是否相等时,常规字典不会考虑顺序,但 OrderedDict 会:
>>> d1 = {"a": 1, "b": 2}
>>> d2 = {"b": 2, "a": 1}
>>> d1 == d2
True
>>> list(d1)
['a', 'b']
>>> list(d2)
['b', 'a']
>>> from collections import OrderedDict
>>> od1 = OrderedDict([("a", 1), ("b", 2)])
>>> od2 = OrderedDict([("b", 2), ("a", 1)])
>>> od1 == od2
False
>>> list(od1)
['a', 'b']
>>> list(od2)
['b', 'a']
>>>
(译文完)
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情;
想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03